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We present some applications of an Interacting Particle System (IPS) methodology
to the field of Molecular Dynamics. This IPS method allows several simulations of a
nonequilibrium random process to keep closer to equilibrium at each time, thanks to
a selection mechanism based on the relative virtual work induced on the system. It is
therefore an efficient improvement of usual nonequilibrium simulations, which can be
used to compute canonical averages, free energy differences, and typical transitions
paths.
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Phase-space integrals are widely used in Statistical Physics to relate the macro-
scopic properties of a system to the elementary phenomenon at the microscopic
scale.(11) In constant temperature (NVT) molecular simulations, these integrals
often take the form

µ(A) = 〈A〉 =
∫

T ∗M
A(q, p) dµ(q, p). (1)

where M denotes the position space (also called the configuration space), and
T ∗M denotes its cotangent space. A generic element of the position space M will
be denoted by q = (q1, · · · , qN) and a generic element of the momentum space
by p = (p1, · · · , pN ). We will consider here that M∼R

3N or T
3N (a torus of

dimension 3N, which arises when using periodic boundary conditions), and that
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T ∗M∼R
3N × R

3N or T
3N × R

3N , though in general more complicated situations
should be considered, when performing Blue Moon sampling(4) for example.

The measure µ is the canonical probability measure

dµ(q, p) = Z−1 exp(−βH (q, p)) dq dp, (2)

where β = 1/kBT (T denotes the temperature and kB the Boltzmann constant)
and where H denotes the Hamiltonian of the molecular system:

H (q, p) = 1

2
pT M−1 p + V (q).

In the above expression, V is the potential experienced the N particles, and M =
Diag(m1, · · · , mN) where mi is the mass of the i-th particle. The constant Z in (2)
is the normalization constant defined as

Z =
∫

T ∗M
exp(−βH (q, p)) dq dp.

Some quantities can not be expressed through relations such as (1). One important
example is the free energy of a system, defined (up to a constant) as

F = −β−1 ln Z .

It is though often the case in practice that a straightforward sampling of
µ is difficult. Indeed, high dimensional systems exhibit many local minima in
which the system remains trapped, especially when the temperature is low. In
those cases, alternative approaches have to be used, such as those built on the
simulated annealing(18) paradigm, and its extension to more general switching
dynamics. The idea is to switch slowly from an initial simple sampling problem,
to the target sampling problem, through a well chosen interpolation. This allows
to attain deeper local minima, but, due to its nonequilibrium nature, is not efficient
as such to sample accurately the target measure.

We mention that variations have been proposed, especially tempering methods
(see ref. 15 for a review), the most famous being parallel tempering.(21) These
methods consider an additional parameter describing the configuration system
(e.g. the temperature), and sample those extended configurations according to
some stochastic rules. However, these methods ask for a prior distribution of the
additional parameters (for example a temperature ladder in parallel tempering
method), which are usually estimated through some preliminary runs.(15)

As noted by many authors, switching strategies can be used to compute
exactly ratios of partition function (free energy differences), through an explicit
computation of importance weights of nonequilibrium simulations, often referred
to as Jarzynski’s equality(16,17) (see also ref. 22).

We present here a complementary approach to the above nonequilibrium
strategies. It is similar to the method of,(13) known as “population Monte-Carlo,”
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in which multiple replicas are used to represent the distribution under study. A
weight is associated to each replica, and resamplings are performed at discrete
fixed times to avoid degeneracy of the weights. This methodology is widely used in
the fields of Quantum Monte Carlo(1,25) or Bayesian Statistics, where it is referred
to as Sequential Monte Carlo.(8,6) Note that in the probability and statistics fields,
each simulation is called a ‘walker’ or ‘particle’; we use here the name ‘replica,’
which is more apppropriate to the Molecular Dynamics context.

Our method extends the population Monte-Carlo method to the time-
continuous case. It consists in running M replicas of the system in parallel,
resorting typically to a stochastic dynamics, and considering exchanges between
them, according to a certain probabilistic rule depending on the work done on each
system. This procedure can be seen as automatic time continuous resampling, and
all replicas have the same weight at any time of the simulation. This method dras-
tically increases the number of significative transitions paths in nonequilibrium
simulations. These heuristic explanations are precised in Sec. 2. The set of all
replicas (or walkers) is called an ‘Interacting Particle System’ (IPS),(7) and can
be seen as a genetic algorithm where the mutation step is the stochastic dynamics
considered.

The article is organized as follows. We first precise classical simulated an-
nealing type methods in Sec. 1. We then describe the associated IPS method in
Sec. 2, as well as its numerical implementation. Possible applications and some
numerical results are then presented in Secs. 3 and 4.

1. NONEQUILIBRIUM METHODS

Consider a family of Hamiltonian functions Hλ : T ∗M → R indexed by a
parameter λ ∈ (0, 1). The corresponding Hamiltonian dynamics are⎧⎪⎪⎨

⎪⎪⎩

dq

dt
= ∂ Hλ

∂p
,

dp

dt
= −∂ Hλ

∂q
.

(3)

The family (Hλ)λ∈(0,1) indexes a path between the original state described by a
Hamiltonian H0 and the final state charaterized by a Hamiltonian H1. A canonical
probability measure µλ can be associated to each Hamiltonian Hλ:

dµλ(q, p) = 1

Zλ

e−β Hλ(q,p) dq dp,

where the normalizing constant Zλ is

Zλ =
∫

T ∗M
e−β Hλ(q,p) dq dp.

We will also denote by F(λ) = −β−1 ln Zλ the corresponding free energy.
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We wish to sample according to dµ1, from an initial, easily obtained sample
of dµ0. For each replica of the previous sample, the corresponding configuration
of the system is brought slowly to the end state along a path (λ(t))t∈(0,T ) for a time
T > 0. The final sample of configurations is hopefully close to dµ1.

Typically, we can consider Hλ(q, p) = (1 − λ)H0(q, p) + λH1(q, p) (for
example when performing a change of temperature from T to T ′ : H0(q, p) =
H (q, p), H1(q, p) = β ′

β
H (q, p)). It can also represent a modification of the po-

tential, sometimes called ‘alchemical transition’ in the physics and chemistry
litterature. The folding of a protein could be studied this way for example, by
setting initially all the long-range interactions to zero, whereas the final state
corresponds to a Hamiltonian were all interactions are set on. In this case,

Hλ(q, p) = 1

2
pT M−1 p + Vλ(q).

The nonequilibrium-like strategies can also be extended to the reaction co-
ordinate case.(20) In this case, the initial and the final state are indexed by some
order parameter ξ (q).

1.1. Markovian Nonequilibrium Simulations

The usual way to achieve this method is to perform a time inhomogeneous
irreducible Markovian dynamics

t 	→ Xλ(t)
t , Xλ(0)

0 ∼ µ0, (4)

for t ∈ (0, T ), and a smooth schedule t 	→ λ(t) verifying λ(1) = 0 and λ(T ) = 1,
and such that for all given λ ∈ (0, 1), the Boltzmann distribution dµλ is invariant
under the dynamics t 	→ Xλ

t .
The variable x can represent the whole degrees of freedom (q, p) of the

system, or only the configuration part q. Depending on the context, the invariant
measure µ will therefore be the canonical measure (2), or its marginal with respect
to the momenta, which reads

dµ̃λ(q) = 1

Z̃λ

e−βVλ(q) dq,

with

Z̃λ =
∫
M

e−βVλ(q) dq.

When we do not wish to precise further the dynamics, we simply call x the
configuration of the system, Hλ(x) its energy and dµλ(x) the invariant measure.
The actual invariant measure should be clear from the context.
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Denoting by ps,t (x, y)dy = E(Xλ(t)
t ∈ dy|Xλ(s)

s = x) the density kernel of
the process, the evolution of the process law is characterized by the backward
Kolmogorov equation (t and y being given):

∂s ps,t (., y) = −Lλ(s)(ps,t (., y)),

or its forward version (s and x being given):

∂t ps,t (x, .) = L∗
λ(t)(ps,t (x, .)).

The operator Lλ(t) is called the infinitesimal generator of the dynamics, and its
dual L∗

λ(t) is defined by

∫
ϕ1Lλ(t)(ϕ2) dx =

∫
ϕ2L∗

λ(t)(ϕ1) dx . (5)

The invariance of µλ(t) under the instantaneous dynamic can then be expressed
through the balance condition:

∀ϕ,

∫
Lλ(t)(ϕ)dµλ(t) = 0. (6)

The dynamics we have in mind are (for a fixed λ ∈ [0, 1]):

• The hypo-elliptic Langevin dynamics on T ∗M
{

dqλ
t = M−1 pλ

t dt,

dpλ
t = −∇V (qλ

t ) dt − ξ M−1 pλ
t dt + σ dWt ,

(7)

where Wt denotes a standard 3N-dimensional Brownian motion. The
paradigm of Langevin dynamics is to introduce in the Newton equations
of motion (3) some fictitious brownian forces modelling fluctuations, bal-
anced by viscous damping forces modelling dissipation. The parameters
σ, ξ > 0 represent the magnitude of the fluctuations and of the dissipation
respectively, and are linked by the fluctuation-dissipation relation:

σ = (2ξ/β)1/2. (8)

Therefore, there remains one adjustable parameter in the model. The in-
finitesimal generator is given by:

Lλϕ = M−1 p · ∇qϕ − ∇V (q) · ∇pϕ − ξ M−1 p · ∇pϕ + ξ

β
�pϕ.
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• The elliptic overdamped Langevin dynamics4 in the configuration space
M:

dqλ
t = −∇Vλ

(
qλ

t

)
dt + σ dWt , (9)

where the magnitude of the random forcing is given here by

σ =
√

2

β
.

The corresponding infinitesimal generator is given by:

Lλϕ = 1

β
�qϕ − ∇Vλ(q) · ∇qϕ.

Let us remark that the overdamped Langevin dynamics (9) is obtained
from the Langevin dynamics (7) by letting the mass matrix M go to zero
and by setting ξ = 1, which amounts here to rescaling the time.

It is well known that, for a fixed λ ∈ (0, 1), these dynamics are ergodic under mild
assumptions on the potential V (3).

When the schedule is sufficiently slow, the dynamics is said quasi-static,
and the law of the process Xλ(t)

t is assumed to stay close to its local steady state
throughout the transformation. As said before, this is out of reach at low tem-
perature (more precisely, large deviation results(10) ensure that the typical escape
time from metastable states grows exponentially fast with β, which compells
quasi-static transformations to being exponentially slow with β).

It is therefore interesting to consider approaches built on switched Markovian
dynamics, but able to deal with reasonably fast transition schemes.

1.2. Importance Weights of Non Equilibrium Simulations

For a given nonequilibrium run Xλ(t)
t we denote by

Wt =
∫ t

0

∂ Hλ(s)

∂λ
(Xλ(s)

s )λ′(s) ds

the out of equilibrium virtual work induced on the system during the time interval
(0, t). The quantityWt gives the importance weights of nonequilibrium simulations
with respect to the target equilibrium distribution. Indeed, it was shown in ref. 16
that

E(e−βWt ) = e−β(F(λ(t))−F(0)). (10)

4 This dynamics is actually known as the ‘Langevin dynamic’ in the probability and statistics fields.
We adopt here the physical names of these stochastic processes, which are more natural when dealing
with molecular dynamics.
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This fluctuation equality is known as the Jarzynski’s equality, and can be derived
through a Feynman-Kac formula,(14) as follows.

Consider the Feynman–Kac density kernel defined by∫
ϕ(y)pw

s,t (x, y)dy = E
(
ϕ
(
Xλ(t)

t

)
e−β(Wt −Ws )|Xλ(s)

s = x
)
, (11)

and characterized by the following extended backward Komogorov evolution:

∂s pw
s,t (., y) = −Lλ(s)

(
pw

s,t (., y)
) + β

∂ Hλ(s)

∂λ
λ′(s)pw

s,t (., y).

Using this identity and the balance Eq. (6) gives:

∂s

∫
pw

s,t (x, y)e−β Hλ(s)(x)dx = 0

and thus after integration on (0, t), we get the fundamental Feynamn-Kac fluctua-
tion equality:

Zt

Z0

∫
ϕdµλ(t) = E

(
ϕ
(
Xλ(t)

t

)
e−βWt

)
. (12)

Therefore, taking ϕ = 1, it follows

E(e−βWt ) = e−β(F(λ(t))−F(0)),

and Jensen’s inequality then gives

E(Wt ) ≥ F(λ(t)) − F(0).

This inequality is an equality if and only if the transformation is quasi-static on
(0, t); in this case the random variable Wt is actually constant and equal to �F .
When the evolution is reversible, this means that equilibrium is maintained at all
times.

As an improvement, we will replace the exponential importance weights of
the nonequilibrium paths by a selection rule between replicas.

2. THE INTERACTING PARTICLE SYSTEM METHOD

Our strategy is inspired by the re-sampling methods in Sequential Monte
Carlo (SMC) literature.(6,9) In this time continuous context, the idea is to replace
importance weights of simulations performed in parallel, by a selection operation
between replicas.

We first present the IPS approximation in Sec. 2.1, as well as convergence
results of the discretized measure to the target measure. A justification through a
mean-field interpretation is then proposed in Sec. 2.2. The numerical implemen-
tation of the IPS method is eventually discussed in Sec. 2.3.
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2.1. The IPS and its Statistical Properties

Recall that the potential of mean force defined by

Fλ(t) =
∫

∂ Hλ

∂λ
(x) dµλ(t)(x)

is the average force applied to the system during an infinitely slow transformation.
It can be used in a thermodynamic integration to compute free energy differences:

F(1) − F(0) =
∫ T

0
Fλ(t)λ

′(t) dt. (13)

The first step is to rewrite the Feynman-Kac formula (12) by introducing a di-
chotomy when a replica is receiving either excess or deficit work compared to the
potential of mean force.

To this end, we define respectively the excess and deficit force, and the excess
and deficit work as

f ex
t (x) =

(
∂ Hλ(t)

∂λ
− Fλ(t)

)+
(x), f de

t (x) =
(

∂ Hλ(t)

∂λ
− Fλ(t)

)−
(x)

Wex
t =

∫ t

0
f ex
s (Xλ(s)

s )λ′(s) ds, Wde
t =

∫ t

0
f de
s

(
Xλ(s)

s

)
λ′(s) ds, (14)

where x+ = max{x, 0} and x− = max{−x, 0} (so that x = x+ − x−). We then
rewrite

∫
φ dµλ(t) = E

(
ϕ
(
Xλ(t)

t

)
e−β

(
Wex

t −Wde
t

))
E

(
e−β(Wex

t −Wde
t )

) . (15)

We now present the particle interpretation of (15) enabling a numerical com-
putation through the use of empirical distributions. Consider M Markovian systems
described by variables Xk

t (1 ≤ k ≤ M). We approximate the virtual force by

FM
λ(t) = 1

M

M∑
k=1

∂ Hλ(t)

∂λ

(
Xk

t

)
,

and the Boltzmann distribution by

dµM
λ(t)(x) = 1

M

M∑
k=1

δXk
t
(dx),

which are their empirical versions. This naturally gives from definitions (14)
empirical approximations of excess/deficit forces f M,ex/de

t and works Wk,ex/de
t .

The replicas evolve according to a branching process with the following
stochastic rules (see refs. 25 and 27 for further details):
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Process 1. Consider an initial distribution (X1
0, · · · , XM

0 ) generated from
dµ0(x). Generate idependent times τ

k,b
1 , τ

k,d
1 from an exponential law of mean

β−1 (the upperscripts b and d refer to ‘birth’ and ‘death’ respectively), and ini-
tialize the jump times T b/d as T k,d

0 = 0, T k,b
0 = 0.

For 0 ≤ t ≤ T .

• Between each jump time, evolve independently the replicas Xk
t according

to the dynamics (4);
• At random times T k,d

n+1 defined by

Wk,ex
T k,d

n+1

− Wk,ex
T k,d

n
= τ

k,d
n+1,

an index l ∈ {1, · · · , M} is picked at random, and the configuration of the
k-th replica is replaced by the configuration of the l-th replica. A time τ

k,d
n+2

is generated from an exponential law of mean β−1;
• At random times T k,b

n+1 defined by

Wk,de
T k,d

n+1

− Wk,de
T k,d

n
= τ

k,b
n+1,

an index l ∈ {1, · · · , M} is picked at random, and the configuration of the
l-th replica is replaced by the configuration of the k-th replica. A time τ

k,b
n+2

is generated from an exponential law of mean β−1.

The selection mechanism therefore favors replicas which are sampling values
of the virtual work Wt lower than the empirical average. The system of replicas is
‘self-organizing’ to keep closer to a quasi-static transformation.

In refs. 7 and 25, several convergence results and statistical properties of the
replicas distribution are proven. They are summarized in the following proposition:

Proposition 2.1. Assume that (t, x) 	→ ∂ Hλ(t)

∂λ
(x) is a continuous bounded func-

tion on (0, T ) × T ∗M (or (0, T ) × M in the case of overdamped Langevin dy-
namics), and that the dynamic (4) is ergodic. Then for any t ∈ (0, T ),

• The estimator

exp

(
−β

∫ t

0
FM

λ(s)λ
′(s) ds

)
(16)

is an unbiased estimator of e−β(F(λ(t))−F(0));
• for all test function ϕ, the estimator

∫
ϕ dµM

λ(t) is an asymptotically normal

estimator of
∫

ϕ dµλ(t), with bias and variance of order M−1.

Let us emphasize that the sample (Xk
t )1≤k≤M is in particular an empirical

approximation of the canonical measure dµλ(t) for all t.
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The proof follows from Lemma 3.20, Proposition 3.25 and Theorem 3.28
of(7) (see also refs. 25 and 27 for further details).

The unbiased estimation of un-normalized quantities is a very usual property
in particle system methods. It comes from the fundamental property that at each
“time step,” each replica may branch with a number of offsprings equal in average
to its relative importance weight.

2.2. Consistency Through a Mean-Field Limit

In order to prove the consistency of the IPS approximation, we consider the
ideal setting where the number of replicas goes to infinity (M → +∞). This point
of view is equivalent to a mean-field or Mc Kean interpretation of the IPS (denoted
by the superscript ‘mf’). In this limit, the behavior of any single replica, denoted by
Xmf

t , is then independent from any finite number of other ones. We shall consider
the mean field distribution and force:

Law
(
Xmf

t

) = dµ
m f
t = µmf

t (x) dx,

Fmf
t =

∫
∂ Hλ(t)

∂λ
dµmf

t .

The associated mean field excess/deficit forces f mf ,ex/de
t and works Wmf ,ex/de

t are
defined as in (14).

In view of Process 1, the stochastic process Xmf
t is a jump-diffusion process

which evolves according to the following stochastic rules (some facts about pure
Markov jump processes are recalled in the Appendix):

Process 2. Generate Xmf
0 from dµ0(x). Generate idependent clocks (τ b

n , τ d
n )n≥1

from an exponential law of mean β−1, and initialize the jump times T b/d as
T d

0 = 0, T b
0 = 0.

For 0 ≤ t ≤ T ,

• Between each jump time, t 	→ Xmf
t evolves according to the dynamics (4);

• At random times T d
n+1 defined by

Wmf ,ex
T d

n+1
− Wmf ,ex

T d
n

= τ d
n+1,

the process jumps to a configuration x, chosen according to the probability
measure dµmf

T d
n+1

(x);

• At random times T b
n+1 defined by

E
(
Wmf ,de

t

)|t=T b
n+1

− E
(
Wmf ,de

t

)|t=T b
n

= τ b
n+1,
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the process jumps to a configuration x, chosen according to the probability
measure proportional to f mf ,de

T b
n+1

(x)dµ
m f
T b

n+1
.

Remark 1. Note that, in the treatment of the deficit work, we take in Process 2
the point of view of the jumping replica; whereas in Process 1, we take the point
of view of the attracting replica which induces a branching.

From the above probabilistic description, we can derive the Markov generator
of the mean-field process, given by the sum of a diffusion and a jump generator
(see the Appendix):

Lmf
t = Lλ(t) + Jt,µmf

t
,

where the jump generator Jt,µmf
t

is defined as

Jt,µmf
t

(ϕ)(x) = βλ′(t)
∫

(ϕ(y) − ϕ(x))
(

f mf ,ex
t (x) + f mf ,de

t (y)
)
dµmf

t (y).

A straitforward integration (using (5)) gives the fundamental balance identity of
the jump generator:

J ∗
t,µmf

t

(
µ

m f
t

) = β

(
Fmf

t − ∂ Hλ(t)

∂λ

)
λ′(t)µm f

t

which implies, by forward Kolmogorov,

∂tµ
mf
t = L∗

λ(t)

(
µmf

t

) + β

(
Fmf

t − ∂ Hλ(t)

∂λ

)
λ′(t)µmf

t

so that finally

∂t

(
µmf

t e−β
∫ t

0 Fmf
s ds

)
= L∗

λ(t)

(
µmf

t e−β
∫ t

0 Fmf
s ds

)
− β

∂ Hλ(t)

∂λ
λ′(t)µmf

t e−β
∫ t

0 Fmf
s ds .

The latter is exactly the forward evolution equation of the Feynamn-Kac kernel
pw

0,t defined in (11), and thus
∫

pw
0,t (x, .)dµ0(x) = µ

m f
t e−β

∫ t
0 Fmf

s ds . Using (12),
this gives the identities:

µmf
t = µλ(t), Fmf

t = Fλ(t), f mf ,ex/de
t = f ex/de

λ(t) .

and proves the consistency of the IPS approximation scheme.

2.3. Numerical Implementation

In the previous section, we discretized the measure by considering an empir-
ical approximation. For a numerical implementation to be tractable, it remains to
discretize the time evolution. Notice already that the IPS method induces no extra
computation of the forces, and is therefore unexpensive to implement. However,
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although the IPS can be parallelized, the processors have to exchange informations
at the end of each time step, which can slow down the simulation.

There are several ways to discretize the dynamics (7) or (9). Some common
schemes used in molecular dynamics are the Euler-Maruyama discretization for
(9), and the BBK scheme(2) for (7). We refer to ref. 3 for alternative approaches in
the field of molecular dynamics. In the sequel, we will denote by xn,k a numerical
approximation of a realization of Xk

n�t , with x = q or x = (q, p) depending on
the context.

Euler Discretization of the Overdamped Langevin Dynamics

The Euler-Maruyama numerical scheme associated to (9) reads, when taking
integration time steps �t ,

qn+1 = qn − �t∇Vλ(qn) +
√

2�t

β
Rn,

where (Rn)n∈N is a sequence of independent and identically distributed (i.i.d.)
3N-dimensional standard Gaussian random vectors. The numerical convergence
of this scheme can be ensured in some circumstances.(3)

Discretization of the Langevin Dynamics

When considering an integration time step �t , the BBK discretization of (7)
reads componentwise (recall that the underscripts j refer here to the components
of a given xk = x = (q, p)),

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pn+1/2
j = pn

j + �t
2

(
−∇q j V (qn) − ξ

pn
j

m j
+ σ j√

�t
Rn

j

)

qn+1
j = qn

j + �t
pn+1/2

j

m j

pn+1
j = 1

1+ ξ�t
2m j

(
Pn+1/2

j − �t
2 ∇q j V (qn+1) + σ j

√
�t
2 Rn+1

j

)

where the random forcing terms Rn
j (∈ {1, · · · , N } is the label of the particles, n

is the iteration index) are standard i.i.d. Gaussian random variables. The fluctu-
ation/dissipation relation (8) must be corrected so that the kinetic temperature is
correct in the simulations.(3) To this end, we set

σ 2
j = 2ξ

β

(
1 + ξ�t

2m j

)
.

Notice that the relation (8) is recovered in the limit �t → 0.
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Discretization of the Selection Operation

We consider for example the following discretization of the force exerted on
the k-th replica on the time interval [n�t, (n + 1)�t] :

∂ H k,�t
λn+1/2

∂λ
= 1

2

(
∂ Hλ(n�t)

∂λ
(xn,k) + ∂ Hλ((n+1)�t)

∂λ
(xn+1,k)

)
.

The mean force is then approximated by

FM,�t
λn+1/2

= 1

M

M∑
k=1

∂ H k,�t
λn+1/2

∂λ
.

To get a time dicretization of the IPS, Process 1 is mimicked using the following
rules:

• the time integrals are changed into sums;
• the selection times are defined as the first discrete times exceeding the

exponential clocks τ b/d .

Further details about the numerical implementation can be found in ref. 26. Note
that one can find more elaborate methods of discretization of the IPS (see ref. 27),
but this one seems to be sufficient in view of the intrinsic errors introduced by the
discretization of the dynamics.

3. APPLICATIONS OF THE IPS METHOD

3.1. Computation of Canonical Averages

The most obvious application of the IPS method is the computation of
phase-space integrals, since an unweighted sample of all Boltzmann distribu-
tions (µλ(t))t∈(0,T ) is generated. The sample obtained can of course be improved
by some additional sampling process (according to a dynamics leaving the target
canonical measure invariant). This will decorrelate the replicas and may increase
the quality of the sample. We refer to ref. 3 for further precisions on sampling
methods, to ref. 28 for some numerical tests assessing the quality of the sample
generated as a function the transition time T and the number of replicas M, and to
ref. 26 for an application to pentane.

3.2. Estimation of Free Energy Difference

The free energy of a system is defined (up to a constant) as

F = −β−1 ln Z
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where Z is the partition function Z = ∫
exp(−βH (q, p)) dq dp. It cannot be

computed with a single sample of µλ. Only free energy differences can be
computed easily. Since the free energy of certain states is known (This is the
case for perfect gases, or for solids at low temperature(24)), the free energy
of any state can in principle be obtained by an integration between a state
whose free energy is known, and the state of interest. Usual methods to this
end are Thermodynamic integration,(19) the free energy perturbation method(32)

and the related Umbrella sampling technique,(30) or Jarzynski’s non equilibrium
dynamics (also called ’fast growth’).(16) It is still a matter of debate which
method is the most efficient. While some results show that fast growth meth-
ods can be competitive in some situations,(12) other studies disagree.(23) However,
a fair comparison is difficult since the dynamics used may differ (in, ref. 23
Hamiltonian dynamics are used during the switching process), and more efficient
fast growth methods techniques (using, e.g. path sampling(29,31)) are still under
investigation.

In the work of Jarzynski,(16) M independent realizations (X1
t , · · · , X M

t ) of a
bare out of equilibrium dynamic (4) are used to compute free energy differences
through (10), with the estimator

�F̂J = − 1

β
ln

(
1

M

M∑
k=1

e−βWk
1

)
.

An alternative (yet similar) estimator relying on the thermodynamical integration
13, which is also considered in ref. 29 (and is implicit in ref. 16) is

�F̂ ′
J =

∫ T

0
FMind

λ(t) λ′(t) dt,

where

FMind
λ(t) = µ

Mind
λ(t)

(
∂ Hλ(t)

∂λ

)
, with µ

Mind
λ(t) (dx) = �M

k=1δXk
t
(dx)e−βWk

t

�M
k=1e−βWk

t
.

However, both estimators �F̂J and �F̂ ′
J suffer from the fact that only a few values

of W i
t are really important. Indeed, because of the exponential weighting, only

the lower tail of the work distribution is taken into account. The quality of the
estimation then relies on those rare values, which may be a problem in practice
(see e.g. ref. 23.

In the case of interacting replicas, we use similarly

�F̂IPS =
∫ T

0
FM

λ(t)λ
′(t) dt,

which shares by Proposition 2.1 the same statistical properties as �F̂J : �F̂IPS

is asymptotically normal with bias and variance of order M−1, and the estimator
e−β�F̂IPS is unbiased estimator of eβ�F .
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Our numerical comparisons often turned out to give similar free energy
estimations for the IPS method and the standard Jarzynski method. However, we
have mostly considered the issue of pure energetic barriers, where the difficulty of
sampling comes from overcoming a single high barrier. The observed numerical
equivalence may be explained by the fact that the selection mechanism in the IPS
method does not really help to explore those regions of high potential energy.

When the sampling difficulties also come from barriers of more entropic
nature (e.g. a succession of very many transition states separated by low energy
barriers), the IPS may improve the estimation. Indeed, the selection mechanism
helps keeping a statistical amount of replica in the areas of high probability with
respect to the local Boltzmann distribution µλ throughout the switching process
(see the numerical example in Sec. 4.1). This relaxation property may be crucial
to ensure at each time a meaningful exploration ability. These points are still under
investigation.

3.3. Initial Guesses for Path Sampling

The problem of free energy estimation is deeply linked with the problem of
sampling meaningful transition path. In the IPS method, one can associate to each
replica Xk

t a genealogical continuous path (Xk,gen
s )s∈(0,t). The latter is constructed

recursively as follows for a replica k (for 0 ≤ t ≤ T ):

• at each time t, set Xk,gen
t = Xk

t ;
• at each random time Tn when the replica jumps and adopts a new configu-

ration (say of replica l), set (Xk,gen
s )(0,Tn ) = (Xl,gen

s )(0,Tn ).

This path represents the ancestor line of the replica, and is composed of the past
paths selected for their low work values. The study of the set of genealogical
paths lies outside the scope of this article (see ref. 5 for a discussion in the
discrete time case). However, let us mention that for a given t ∈ (0, T ), the set of
genealogical paths is sampled, in the limit M → ∞, according to the law of the
non-equilibrium paths (Xλ(s)

s )s∈(0,t) weighted by the factor e−βWt (with statistical
properties analogous to those of proposition 2.1). These paths are thus typical
among non-equilibrium dynamics of those with non-degenerate work. Therefore,
they might be fruitfully used as non-trivial initial conditions for more specialized
path sampling techniques (as e.g. ref. 31).

4. NUMERICAL SIMULATIONS

4.1. A Toy Example

Consider the following family of Hamiltonians (Hλ)λ∈(0,1):

Hλ(x) = x2

2
+ λQ1(x) + λ2

2
Q2(x) + λ3

6
Q3(x) + λ4

24
Q4(x) (17)
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with

Q1(x) = −1

8x2 + 1
, Q2(x) = −4

8(x − 1)2 + 1
,

Q3(x) = −18

32(x − 3/2)2 + 1
, Q4(x) = −84

64(x − 7/4)2 + 1
.

Some of those functions are plotted in Fig. 1. This toy one-dimensional model is
reminiscent of the typical difficulties encountered when µ0 is very different from
µ1. Notice indeed that several transitional metastable states (denoted A and B in
Fig. 1) occur in the canonical distribution when going from λ = 0 to λ = 1. The
probability of presence in the basins of attraction of the main stable states of H1

(C and D in Fig. 1) is only effective when λ is close to 1.
Simulations were performed at β = 13 with the overdamped Langevin dy-

namics (9), and the above Hamiltonian family (17). The number of replicas was
M = 1000, the time step �t = 0.003, and λ is considered to be linear: λ(t) = t/T .
Figure 2 presents the distribution of replicas during a slow out of equilibrium plain

H
3/5

H
4/5

H
1

A 

B 

C D 

Fig. 1. Plot of some Hamiltonian functions, as defined by (17).
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λ =4/5

A B 

C 

=1

A B C 

D 

λ

Fig. 2. Empirical densities (in dots) obtained using independant replicas.

dynamic: T = 30. Figure 3 presents the distribution of replicas during a faster dy-
namics with interaction: T = 15.

When performing a plain out of equilibrium dynamics (even ‘slow’) from
λ = 0 to λ = 1, almost all replicas are trapped by the energy barrier of these
transitional metastable states (see Fig. 2). In the end, a very small (almost null)
proportion of replicas have performed interesting paths associated with low values
of virtual work W . When using (12) to compute thermodynamical quantities,
these replicas bear almost all the weight of the degenerate sample, in view of the
exponential weighting. The quality of the result therefore depends crucially on
these rare values.

On the contrary, in the interacting version, the replicas can perform jumps
in the configuration space thanks to the selection mechanism, and go from one
metastable basin to another. In our example, as new transition states appear, only
few clever replicas are necessary to attract the others in good areas (see Fig. 3). In
the end, all replicas have the same weight, and the sample is not degenerate. Notice
also that the final empirical distribution is fairly close to the theoretical one.

λ =4/5

A 
B 

C 

λ =1

C 

D 

Fig. 3. Empirical densities (in dots) obtained using interacting replicas.
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Table I. Error in Free Energy Estimation

Method Bias Variance

Plain +0.25 0.19
Interacting +0.15 0.10

We have also made a numerical estimation of the error of the free energy
estimation, with 40 realizations of the above simulation. The results are presented
in Table I, and show an important reduction of standard deviation and bias up to a
factor 2 when using the IPS method.

4.2. Gradual Widom Insertion

We present here an application to the computation of the chemical potential
of a soft sphere fluid. This example was considered in refs. 12 and 23 for example.
We consider a two-dimensional (2D) fluid of volume |�|, simulated with periodic
boundary conditions, and formed of N particles interacting via a pairwise potential
V. The chemical potential is defined, in the NVT ensemble, as

µ = ∂ F

∂ N
,

where F is the free-energy of the system. Actually, the kinetic part of the partition
function Z can be straightforwardly computed, and accounts for the ideal gas
contribution µid. In the large N limit, the chemical potential can be rewritten as(11)

µ = µid + µex,

with

µid = −β−1 ln

( |�|
(N + 1)3

)
,

where  is the “thermal de Broglie wavelength”  = h(2πmβ−1)−1/2 (with h
Planck’s constant). The excess part µex is

µex = −β−1 ln

(∫
�N+1 exp(−βV (q N+1)) dpN+1

|�| ∫
�

exp(−βV (q N )) dq N

)
,

where V (q N ) is the potential energy of a fluid compose of N parti-
cles. We restrict ourselves to pairwise interactions, with an interaction
potential �. Then, V (q N ) = ∑

1≤i< j≤N �(|qi − q j |). Setting π (q N ) =
Z−1 exp(−βV (q N ))with Z = ∫

�N exp[−βV (q N )]dq N ) and �V (q N , q) =
V (q N+1) − V (q N ) with q N+1(q N , q), it follows

µex = −β−1 ln

(
1

|�|
∫

�

e−β�V (q,q N )dπ (q N ) dq

)
. (18)
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The formula (18) can be used to compute the value of chemical potential using
stochastic methods such as the free energy perturbation (FEP) method.(32) In this
case, we first generate a sample of configurations of the system according to π ,
and then evaluate the integration in the remaining q variable by drawing positions
q of the remaining variable uniformly in �.

Another possibility is to use fast growth methods, resorting to the following
parametrization

Hλ(q N+1, pN+1) =
N+1∑
i=1

p2
i

2m
+ Vλ(q N+1) =

N+1∑
i=1

p2
i

2m
+ V (q N ) + λ�V (q N , q).

In this case, the interactions of the remaining particle with the N first ones are
progressively turned on.

As in refs. 12 and 23 we use a smoothed Lennard-Jones potential in order
to avoid the singularity at the origin (Let us however note that, once the particle
is inserted, it is still possible to change all the potentials to Lennard-Jones poten-
tials, and compute the correponding free-energy difference). The Lennard Jones
potential reads

�LJ(r ) = 2ε

(
1

2

(σ

r

)12
−

(σ

r

)6
)

,

and the modified potential is

�(r ) =
⎧⎨
⎩

a − br2, 0 ≤ r ≤ 0.8 σ,

�LJ(r ) + c(r − rc) − d, 0.8 σ ≤ r ≤ rc,

0, r ≥ rc.

The values a, b, c are chosen so that the potential is C1. The distance rc is a
prescribed cut-off radius. We consider the insertion of a particle in a 2D fluid of
25 particles, at a density ρσ 3 = 0.8, with rc = 2.5 σ, βε = 1,�t = 0.0005, and
a schedule λ(t) = t/T where T is the transition time. The results are presented
in Table II, for different transitions times, but at a fixed computational cost, since

Table II. Free Energy Estimation for one Realization of Each Method,

Depending on the Switching time T and the Number of Replicas M

Used, Keeping MT Constant

M = 105 M = 5 × 104 M = 2 × 104 M = 104

Method T = 1 T = 2 T = 5 T = 10

Plain noneq. dyn. 1.31 (0.015) 1.33 (0.017) 1.32 (0.023) 1.32 (0.038)
IPS 1.37 (0.025) 1.35 (0.040) 1.33 (0.033) 1.32 (0.037)

Note. The results are averaged over 10 realizations, and are presented un-
der the form 〈µ〉 > (

√
Var(µ)). The reference value obtained through FEP is

µex = 1.32 kBT (±0.01 kBT ). Notice that the results are quite comparable.
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MT is constant. Some work distributions are also depicted in Fig. 4. A reference
value was computed using FEP, with 108 insertions, done by running M = 103

independent Langevins dynamics for the system composed of N particles, for a
time tFEP = 50 (after an initial thermalization time to decorrelate the systems),
and inserting one particle at random after each time-step. The reference value
obtained is µex = 1.32kBT (±0.01 kBT ).

As can be seen from the results in Table II, the IPS algorithm has a comparable
accuracy to Jarzynski’s estimates provided the switching time is long enough.
However, the work distribution is very different, and has a stable gaussian shape
for all switching rates considered, whereas the work distribution obtained through
the fast growth method are much wider (see in particular Fig. 4 (Left)), so that
the relevant part of the work distribution (the lower tail) is only of small relative
importance.

APPENDIX: PURE JUMP PROCESSES

Consider a Markov process Xt of infinitesimal generator

Jt ( f )(x) =
∫

( f (y) − f (x))αt (x)dµt (y),

where for each time t, αt is a bounded positive function and µt a probability
measure. Denote by (Tn)n≥1 the jump times (with T0 = 0), and (τn)n≥1 independant
clocks of exponential law of mean 1. Then the system evolves according to the
following stochastic rules:

• the jump times are defined by
∫ Tn+1

Tn

αt (Xt ) dt = τn+1;

• at jump times, the process jumps to a configuration chosen according to
the probability measure dµTn+1 (y).
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